La bioinformatique une aide précieuse pour la paléoprotéomique

Fabrice BRAY

Miniaturisation pour la Synthèse, l'Analyse & la Protéomique UAR 3290

Journée JOLIBIO, Jeudi 9 Novembre 2023

Université de Lille, FST

Introduction

Mesure des rapports isotopiques Alimentation, climat

Datation Âge de l'échantillon

Analyse d'ADN Reconstruction phylogénétique

Analyse des protéines Identification de l'espèce, Conservation, Modifications, Identification du sexe, Phylogénie

Morphologie Identification du taxon

Mâchoire d'ours des cavernes Ursus speleaus

Introduction

Mesure des rapports isotopiques Prélèvement et préparation spécifique

Analyse des protéines Besoin d'améliorer de la préparation à l'analyse

Datation Méthode plus destructive que la protéomique

> ADN Limitation avec la dégradation et les contaminants

Morphologie Petits fragments Outils

Problématiques

- Identification d'espèces éteintes et des outils via la morphologie:

Outils en os fabriqués par les Hommes préhistoriques, brûlés et petits fragments

Outils en os de la cave de Scladina

Os brulés

Petits fragments

Saber-toothed cat (Homotherium latidens)

Cave bear (Ursus spelaeus)

- Reconstruction phylogénétique

- Analyse d'un grand nombre d'échantillons par protéomique: Plusieurs milliers de fragments sur les sites
- Analyse d'échantillons précieux dans les musées:

Prélèvement soumis à autorisation

- Identification du sexe des animaux:

L'Homme de Neandertal mangeait plus d'Aurochs femelle ou mâle?

Identification des taxons (famille, genre, espèces) à l'aide de marqueurs

Buckley, M., Collins, M., Thomas-Oates, J., & Wilson, J. C. (2009). Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up-to-the-Minute Research in Mass Spectrometry, 23(23), 3843-3854.

5

Base de donnée des peptides ZooMS

Species	Sample age	P1	Α	Α'	В	С	P2	D	E	F	F'	G	G'
Bos primigenius	Modern	1105.6	1192.7	1208.7	1427.7	1580.8	1648.8	2131.1	2792.3	2853.4	2869.4	3017.5	3033.5
Ovis aries	Modern	1105.6	1180.6	1196.6	1427.7	1580.8	1648.8	2131.1	2792.3	2883.4	2899.4	3017.5	3033.5
Capra hircus	Modern	1105.6	1180.6	1196.6	1427.7	1580.8	1648.8	2131.1	2792.3	2883.4	2899.4	3077.5	3093.5
Capra ibex	Modern	1105.6	1180.6	1196.6	1427.7	1580.8	1648.8	2131.1	2792.3	2883.4	2899.4	3077.5	3093.5
Cervus elaphus	Modern	1105.6	1180.6	1196.6	1427.7	1550.8	1648.8	2131.1	2792.3	2883.4	2899.4	3017.5	3033.5

Étapes du protocole

with Ultrahigh-Resolution MALDI-FTICR Mass Spectrometry. Analytical Chemistry, 95(19), 7422-7432.

MALDI ToF ABsicex

Bruker Université de Lille

Comparaison MALDI-TOF (ZooMS) vs MALDI FTICR

Spectre MALDI FTICR de mouton

Identification à l'aide de programme

- En 2018, Muxin Gu & Michael Buckley utilisent du machine learning pour identifier la taxonomie des vertebrés.
- En 2020, Simon Hickinbotham et al. ont développés une méthode de classification des spectres MALDI-ToF sur des poissons.
- En 2023, Andrew Baker et al. ont utilisés un algorithme d'IA pour classifier des spectres MALDI ToF de poissons
- Programmes non utilisés
- Nécessité de créer un programme simple, rapide et modifiable

Gu, M., & Buckley, M. (2018). Semi-supervised machine learning for automated species identification by collagen peptide mass fingerprinting. *BMC bioinformatics*, *19*(1), 1-9. Richter, K. K., McGrath, K., Masson-MacLean, E., Hickinbotham, S., Tedder, A., Britton, K., ... & Speller, C. F. (2020). What's the catch? Archaeological application of rapid collagen-based species identification for Pacific Salmon. *Journal of Archaeological Science*, *116*, 105116.

10 Baker, A., Harvey, V. L., & Buckley, M. (2023). Machine Learning for collagen peptide biomarker determination in the taxonomic determination of archaeological fish remains. *Journal of Archaeological Science: Reports, 49*, 104001.

Identification des spectres MALDI

Fichiers du logiciel

Fichier taxonomie

Taxon Id	Common name	Scientific name	Parent	Rank
9254		Prototheria	40674	no rank
9255	egg-laying mammal	Monotremata	9254	order
9256		Ornithorhynchidae	9255	family
9257		Ornithorhynchus	9256	genus
9258	Duckbill platypus	Ornithorhynchus ana	9257	species
9259	echidnas	Tachyglossidae	9255	family
9260	short-nosed echidn	Tachyglossus	9259	genus
9261	Short-beaked echid	Tachyglossus aculeat	9260	species
9263	marsupials	Metatheria	32525	no rank
9265	opossums	Didelphidae	38605	family
9266		Didelphis	126287	genus
9267	North American ope	Didelphis virginiana	9266	species
9268	Southern opossum	Didelphis marsupiali	9266	species
9269		Marmosa	126287	genus
9271		Philander	126287	genus
9272	Gray four-eyed opo	Philander opossum	9271	species
9273		Thylacinidae	38608	family
9274		Thylacinus	9273	genus
9275	Tasmanian wolf	Thylacinus cynoceph	9274	species
9277		Dasyuridae	38608	family
9278	quolls	Dasyurus	9277	genus
9279	Eastern quoll	Dasyurus viverrinus	9278	species

Fichier table peptides

Rank	Taxid	Taxon name	Sequence	PTM	Code	Masses	Protein	SeqId	Begin	End	Comment	
species	32536	Acinonyx jubatus	GPSGEPGTAC	4P	G	2983.51196	COL1A2	XP_01492202	847	879	K - peptide - G, #mismatch (0
species	32536	Acinonyx jubatus	GEQGPAGPP	3P	E	2820.35473	COL1A2	XP_01492202	544	573	K - peptide - G, #mismatch (0
species	32536	Acinonyx jubatus	GPPGESGAA	1P	С	1566.75068	COL1A2	XP_01492202	592	609	R - peptide - G, #mismatch (0
species	32536	Acinonyx jubatus	TGHPGSVGP	1P	A'	1207.61781	COL1A2	XP_01492202	1068	1080	R - peptide - G, #mismatch (0
species	32536	Acinonyx jubatus	GPNGEAGSA	2P	P2	1609.75649	COL1A2	XP_01492202	382	399	R - peptide - G, #mismatch (0
species	32536	Acinonyx jubatus	GPSGEPGTAC	5P	G'	2999.50687	COL1A2	XP_01492202	847	879	K - peptide - G, #mismatch (0
species	32536	Acinonyx jubatus	GLPGVSGSV	3P	D	2163.10404	COL1A2	XP_01492202	883	906	R - peptide - G, #mismatch (0
species	32536	Acinonyx jubatus	GLPGEFGLPG	2P	В	1453.74341	COL1A2	XP_01492202	574	588	R - peptide - G, #mismatch (0
species	32536	Acinonyx jubatus	TGHPGSVGP	0P1D	A	1192.60691	COL1A2	XP_01492202	1068	1080	R - peptide - G, #mismatch (0
species	32536	Acinonyx jubatus	TGHPGSVGP	0P	A	1191.6229	COL1A2	XP_01492202	1068	1080	R - peptide - G, #mismatch (0
species	32536	Acinonyx jubatus	TGHPGSVGP	1P1D	A'	1208.60183	COL1A2	XP_01492202	1068	1080	R - peptide - G, #mismatch (0
species	32536	Acinonyx jubatus	GVQGPPGPA	1P	P1	1105.57488	COL1A1	XP_02688985	682	693	R - peptide - G, #mismatch (0
species	32536	Acinonyx jubatus	GLTGPIGPPG	2P	F	2853.41258	COL1A1	XP_02688985	760	792	R - peptide - G, #mismatch (0
species	32536	Acinonyx jubatus	GVQGPPGPA	1D1P	P1	1106.5589	COL1A1	XP_02688985	682	693	R - peptide - G, #mismatch (0
species	32536	Acinonyx jubatus	GLTGPIGPPG	3P	F'	2869.40749	COL1A1	XP_02688985	760	792	R - peptide - G, #mismatch (0
species	9646	Ailuropoda melanoleu	GVQGPPGPA	1D1P	P1	1106.5589	COL1A1	XP_03449649	681	692	R - peptide - G, #mismatch (0
species	9646	Ailuropoda melanoleu	GLTGPIGPPG	3P	F'	2869.40749	COL1A1	XP_03449649	759	791	R - peptide - G, #mismatch (0
species	9646	Ailuropoda melanoleu	GVQGPPGPA	1P	P1	1105.57488	COL1A1	XP_03449649	681	692	R - peptide - G, #mismatch (0
species	9646	Ailuropoda melanoleu	GLTGPIGPPG	2P	F	2853.41258	COL1A1	XP_03449649	759	791	R - peptide - G, #mismatch (0
species	9646	Ailuropoda melanoleu	GPSGEPGTAC	4P	G	2957.49631	COL1A2	XP_00291827	847	879	K - peptide - G, #mismatch (0
species	9646	Ailuropoda melanoleu	GEQGPAGPP	3P	E	2820.35473	COL1A2	XP_00291827	544	573	K - peptide - G, #mismatch (0
species	9646	Ailuropoda melanoleu	GPPGESGAA	1P	С	1566.75068	COL1A2	XP_00291827	592	609	R - peptide - G, #mismatch (0
species	9646	Ailuropoda melanoleu	TGHPGTVGP	0P1D	A	1206.62256	COL1A2	XP_00291827	1068	1080	R - peptide - G, #mismatch (0
species	9646	Ailuropoda melanoleu	TGHPGTVGP	1P1D	A'	1222.61748	COL1A2	XP_00291827	1068	1080	R - peptide - G, #mismatch (0
species	9646	Ailuropoda melanoleu	GPNGEAGSA	2P	P2	1609.75649	COL1A2	XP_00291827	382	399	R - peptide - G, #mismatch (0
species	9646	Ailuropoda melanoleu	GPSGEPGTAC	5P	G'	2973.49122	COL1A2	XP_00291827	847	879	K - peptide - G, #mismatch (0
species	9646	Ailuropoda melanoleu	GLPGVSGSV	3P	D	2147.10912	COL1A2	XP_00291827	883	906	R - peptide - G, #mismatch (0
species	9646	Ailuropoda melanoleu	GLPGEFGLPG	2P	В	1453.74341	COL1A2	XP_00291827	574	588	R - peptide - G, #mismatch (0
species	9646	Ailuropoda melanoleu	TGHPGTVGP	OP	A	1205.63855	COL1A2	XP_00291827	1068	1080	R - peptide - G, #mismatch (0
species	9646	Ailuropoda melanoleu	TGHPGTVGP	1P	A'	1221.63346	COL1A2	XP 00291827	1068	1080	R - peptide - G, #mismatch (0

Spectra:	6:\Bioinfo\20	023\Code_po	our_Fabrice-u	pdate\Databa	seFT-SNAP-c	al																
Markers: t	able_mamm	als_with_de	amidation.ts	v					hin	r ró		tat										
Resolution:	0.008										SU	ιαι										
Δ	A - OP	A - 0P1D	A' - 1P	A' - 1P1D I	3 - 2P	C - 1P	D - 3P	E - 3P	F - 2P	F' - 3P	G - 4P	G' - 5P	P1 - 1D1P	P1 - 1P	P2 - 2P	Score	Assignment	Rank	Species			
Bison-priscu	1192.67656	1193.66318	1208.67404	1209.65796	1427.72756	1580.76596	2131.11613		2853.40864	2869.40499		3033.49041	1106.55825	1105.5743	1648.82783		13 27592 [Bovin	subfamily	72004 [Bos m	utus] 9915 [E	Bos indicus]	43346 [Bi
Bison-priscu	1192.68023	1193.66344	1208.67441	1209.65808	1427.72767	1580.76656	2131.11642		2853.40942	2869.4058	3017.49459	3033.49098	1106.55839	1105.57438	1648.82806		14 27592 [Bovin	subfamily	72004 [Bos m	utus] 9915 [8	Bos indicus]	43346 (Bi
Bison-priscus-	-CLI-B4p-der	1193.66327	1208.67385	1209.65767	1427.72719	1580.76598	2131.11474		2853.40744	2869.40232			1106.55805	1105.57417	1648.82733		11 27592 [Bovin	subfamily	72004 [Bos m	utus] 9915 [I	Bos indicus]	43346 [Bi
Bison-priscu	1192.6763	1193.66284	1208.67415	1209.65776	1427.72722	1580.76578	2131.11485		2853.40791	2869.40258		3033.48345	1106.55807	1105.57414	1648.82745		13 27592 [Bovin	subfamily	72004 [Bos m	utus] 9915 [E	Bos indicus]	43346 [Bi
Bos.d.csv	1192.67974		1208.6751		1427.72918	1580.76775	2131.11935		2853.41366	2869.40962		3033.49092		1105.57495	1648.83031		10 27592 [Bovin	subfamily	72004 [Bos m	utus] 9915 (E	Bos indicus]	43346 (Bi
BosO.d.csv	1192.67949		1208.6744		1427.72797	1580.76692	2131.1163	2792.32945	2853.41001	2869.40652		3033.4872		1105.57458	1648.82902		11 27592 [Bovin	subfamily	72004 [Bos m	utus] 9915 [E	Bos indicus]	43346 [Bi
Porc1-1.d.csv	1180.64352	1181.6274	1196.6381	1197.6219	1453.74416	1550.75744	2131.11906	2820.36257	2883.42687		3017.49798	3033.49336	1106.55875	1105.57469	1647.80936		14 35497 [Suina	suborder	9825 [Sus scr	ofa domestic	us] 9823 [Su	is scrofa]
Porc1-2.d.csv	1180.64328	1181.62726	1196.63637	1197.62168	1453.74322	1550.757	2131.11752	2820.36089	2883.4256	2899.42496	3017.49917	3033.493	1106.55859	1105.5747	1647.80775		15 35497 [Suina	suborder	9825 [Sus scr	ofa domestic	cus] 9823 [Su	is scrofa]
Porc2-1.d.cs	1180.64309		1196.6376		1453.74424	1550.7578	2131.11898	2820.36203	2883.4267			3033.49303		1105.57492			9 35497 [Suina	suborder	9825 [Sus scr	ofa domestic	us] 9823 [Su	is scrofa]
Porc2-2.d.csv	1180.64326		1196.63577		1453.7442	1550.7575	2131.11866	2820.36152	2883.42685		3017.49989	3033.49261		1105.57487			10 35497 [Suina	suborder	9825 [Sus scr	ofa domestic	us] 9823 [Su	is scrofa]
Renne 796-1	1150.63273		1166.62763		1427.72864	1580.76649	2131.11779		2883.42573	2899.42419		3093.49847		1105.57487	1648.82952		10 9869 [Rangif	genus	9870 [Rangife	er tarandus]		
Renne 796-2	1150.63092		1166.62784		1427.7289	1580.7674	2131.11819		2883.4258	2899.42459	3077.50024	3093.49915		1105.57498	1648.82918		11 9869 [Rangif	genus	9870 [Rangife	er tarandus]		
act1-1 Mystic	1189.64641		1205.64161		1441.70939	1577.76892			2883.42747	2899.42601	3007.48076	3023.47334		1095.55739	1652.82589		10 9767 [Balaen	species	9767 [Balaen	optera acuto	rostrata]	
act1-2 Mystic	1189.64651		1205.6414				2135.11243		2883.42717	2899.4254	3007.47354	3023.47275	1080.54559	1079.56262			9 9721 [Cetace	infraorder	9731 [Globice	ephala melas	5]	
act1-2 Mystic	1189.64651		1205.6414		1441.70925	1577.76856			2883.42717	2899.4254	3007.47354	3023.47275			1652.82561		9 9721 [Cetace	infraorder	9767 [Balaen	optera acuto	rostrata]	
act10-1Vulpe	1210.65374		1226.64916		1437.71365	1566.75342	2131.12045		2853.42003	2869.41284		2999.51145	1106.56171	1105.57491			10 9627 [Vulpes	species	9627 [Vulpes	vulpes]		
act10-2Vulpe	1210.65225		1226.64957		1437.71471	1566.75452		2820.36174					1106.55824	1105.57547			7 9627 [Vulpes	species	9627 [Vulpes	vulpes]		
act11-1Vulpe	1210.65481		1226.64987		1437.71504	1566.75567								1105.57573			5 9627 [Vulpes	species	9627 [Vulpes	vulpes]		
act11-2Vulpe	1210.65524				1437.7152	1566.75449								1105.57583			4 9627 [Vulpes	species	9627 [Vulpes	vulpes]		
act13-1Orycto	lagus cunicul	lus.d.csv	1221.6341		1453.74383		2129.13701	2836.3473	2883.42114	2899.42057	2957.5038		1106.5611	1105.57529	1592.7639		10 9979 [Lepori	family	9986 [Orycto	lagus cunicul	us]	
act13-2Orycto	lagus cunicul	lus.d.csv	1221.63396		1453.74367		2129.13697	2836.34803	2883.42211	2899.42046	2957.50305			1105.57509	1592.76631		9 9979 [Lepori	family	9986 [Orycto	lagus cunicul	us]	
act19-1Oryct	1205.63925		1221.634		1453.74437		2129.13787	2836.34969	2883.42332	2899.42192			1106.56227	1105.57542	1592.76855		10 9979 [Lepori	family	9986 [Orycto	lagus cunicul	us]	
act19-2Oryct	1205.63801		1221.63412		1453.74421		2129.13784	2836.3494	2883.42329	2899.4219			1106.5604	1105.57536	1592.76631		10 9979 [Lepori	family	9986 [Orycto	lagus cunicul	us]	
act22-1Marmo	ota marmota.	.d.csv			1427.72856		2133.09581		2883.42159	2899.42049	2983.51578	2999.5073		1105.57508	1637.7892		8 10158 [Octoo	family	10160 [Octoo	lon degus]		
act22-2Marmo	ota marmota.	.d.csv			1427.72824		2133.09625		2883.42185	2899.42099	2983.51626	2999.5072	1106.56022	1105.57527	1637.7884		9 10158 [Octoo	family	10160 [Octoo	lon degus]		
act23-1Arvic	1177.60763				1453,74417	1552,73589			2883.42192	2899.4211	3043,50838	3059,50346		1105.57143			8 111838 (Micr	species	111838 [Micr	otus oregoni	1	

12

Informations du programme

• Temps d'exécution:

13

30 sec pour 96 fichiers

• Différenciation des espèces :

Sus scrofa, Sus scrofa domesticus, Phacochoerus africanus Bos mutus, Bison bison bison, Bos taurus, Bos indicus

• Information sur la masses des peptides ZooMS

Sequence	Formula	A	A+D	Α'	A'+D	Species
T GHPG A VGPAGIR	C51H85N18O15	1189.64363	1190.62765	<mark>1205.63855</mark>	1206.62256	Orcinus orca
S GHPG T VGPAG I R	C51H85N18O16	<mark>1205.63855</mark>	1206.62256	1221.63346	1222.61748	Lemur catta
T GHPG T VGPAG V R	C51H85N18O16	<mark>1205.63855</mark>	1206.62256	1221.63346	1222.61748	Ailuropoda melanoleuca

- A = nom de la nomenclature du peptide
- A' = peptide A avec une hydroxyproline = + 15,99 Da
- D = déamidation, delta de masse +0,99 Da

Comparaison FT ICR et ToF

- 100% d'identification sur espèces modernes pour le FTICR et TOF (n = 25)
- 100% d'identification sur spectres FTICR archéologiques (n = 100)
- Gain de temps de 2 jours

Conclusions & perspectives

- Paléoprotéomique est en pleine expansion
- En France, très peu de personnes spécialisées dans le domaine
- Nécessité d'améliorer les méthodes et les traitements des données
- Programme permettant d'identifier les spectres automatiquement

- Détection des pics isotopiques à intégrer
- Mettre au point une comparaison des profils de masse avec de l'IA
- Application pour toutes les espèces animales

Remerciments

