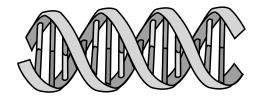
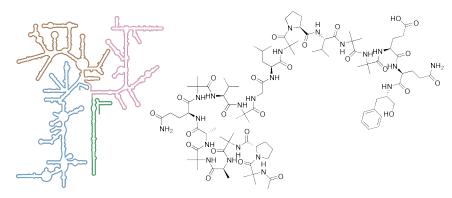
BONSAI Bioinformatics and Sequence Analysis

M. Salson

L'équipe BONSAI

Au sein de CRIStAL (Univ Lille, CNRS, Centrale)

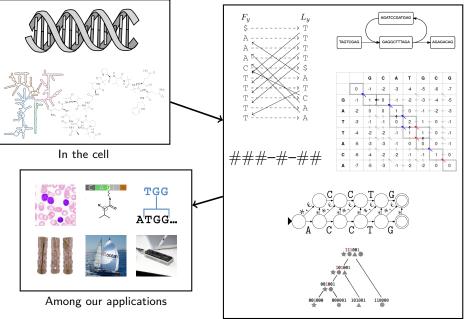

9 permanent·e·s

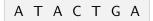

2 chercheuses, 1 chercheur, 5 enseignantschercheurs, 1 ingénieur de recherche

9 non permanent.e.s

7 doctorant·e·s, 1 ingénieur, 1 post-doctorant

Analyzing biological sequence data




Images: Forluvoft et Leyo, CC BY SA Petrov et al, Edgar 181

BiOiNformatics Sequence AnalysIs

Let's compare two sequences

ТАСБАС

Let's compare two sequences

ATACTGA

ТАСБАС

The optimal* solution is

A T A C T G A T A C - G A C

 * Optimal in terms of minimising the number of differences

Let's compare two sequences

ATACTGA

ТАСБАС

The optimal* solution is

A T A C T G A T A C – G A C

To find it we need to compute all possibilities

* Optimal in terms of minimising the number of differences

Let's compare two sequences

ATACTGA

ТАСБАС

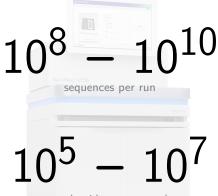
The optimal* solution is

A T A C T G A T A C – G A C

To find it we need to compute all possibilities

This takes \geq **30 microseconds** for two 300nt sequences

* Optimal in terms of minimising the number of differences


Sequencing data is produced at a (very) high throughput

Sequencing data is produced at a (very) high throughput

Sequencing data is produced at a (very) high throughput

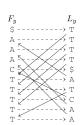
nucleotides per second

up to 300 nucleotides in 10 microseconds

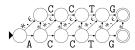
Efficient algorithms cope with the rising throughput

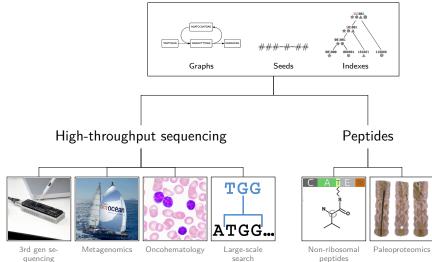
Processing the data could be **10 times longer** than sequencing

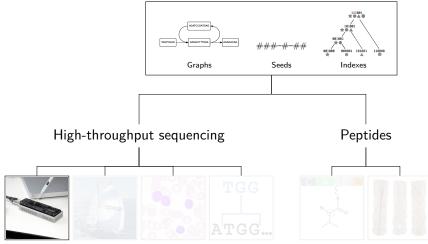
Efficient algorithms cope with the rising throughput


Processing the data could be **10 times longer** than sequencing

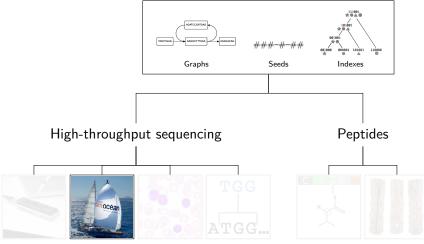
lt's not

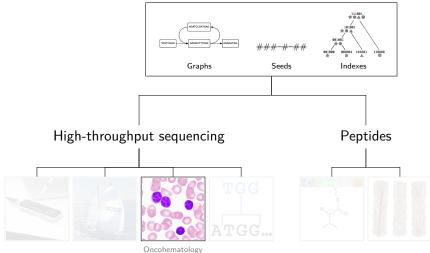

Efficient algorithms cope with the rising throughput


Processing the data could be **10 times longer** than sequencing

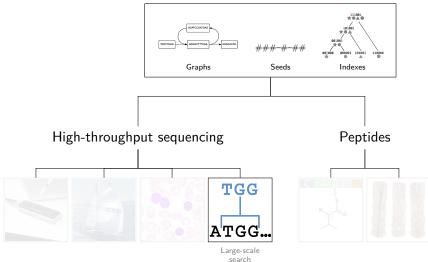


lt's not

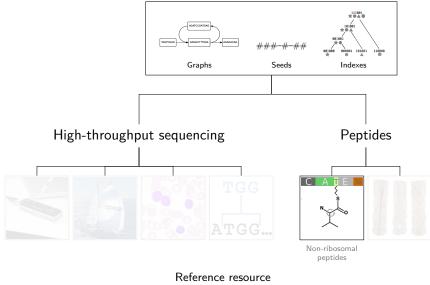


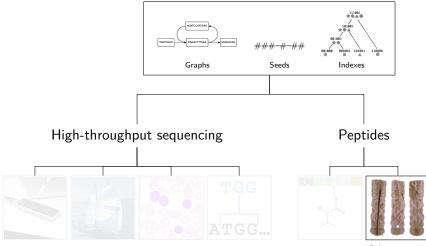

3rd gen sequencing

Splicing variants Multiple alignment assessment Virus mapping

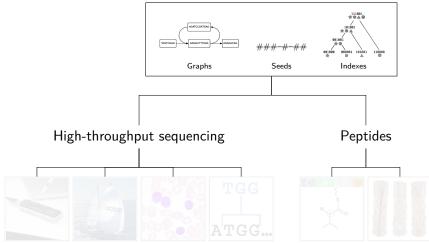


Metagenomics


rRNA filtering Marker gene reconstruction


Marker identification

Searching into collections of runs/genomes



Search of relevant peptides Expert sourcing

Paleoproteomics

Identification of ancestral species

A large software production

Our software production is available online https://bioinfo.univ-lille.fr

Mainly released under open-source licenses

Some success stories of our software

Norine

- 2K queries/month
- 50+ scientists registered to the expert sourcing application
- service delivery plan of the european ELIXIR network

SortMeRNA

- Cited more than 2,000 times.
- Distributed in the Qiime2 pipeline.

Vidjil

- Non-profit VidjilNet consortium in InriaSoft: 8 subscribing hospitals fund two engineers
- More than 50,000 samples analyzed

Bonsai - Bioinformatics sequence analysis cristal.univ-lille.fr/bonsai - @Bonsai_Bioinfo

> Efficient methods devised in collaboration with biology/health labs for analyzing biological sequence data

M2 Internship available: *Bioinformatics analysis of SARS-CoV-2: evaluating and improving sgRNA detection methods*