The impact of AlphaFold

Marc F. Lensink UGSF Computational Biology

What is the purpose of this meeting?

Who are we?

What do we do?

What can we do together?

Ralf Blossey	DR1	Theoretical physics; Complex kinetic modeling
Julie Bouckaert	DR2	Crystallography; Biophysics
Guillaume Brysbaert	IR1	Functional genomics; Bioinformatics; Networks
Goedele Roos	CRCN	Density functional calculations; Redox reactions
Jérôme de Ruyck	MCF	Molecular modeling; Crystallography
Marc Lensink	DR2	Protein-protein interaction; Molecular dynamics; Structural bioinformatics; Networks

The impact of protein-protein interaction on the molecular flow of information in the cell

Ralf Blossey	DR1	Theoretical physics; Complex kinetic modeling
Julie Bouckaert	DR2	Crystallography; Biophysics
Guillaume Brysbaert	IR1	Functional genomics; Bioinformatics; Networks
Goedele Roos	CRCN	Density functional calculations; Redox reactions
Jerome de Ruyck	MCF	Molecular modeling; Crystallography
Marc Lensink	DR2	Protein-protein interaction; Molecular dynamics; Structural bioinformatics; Networks

Protein structure and dynamics

Molecular interaction

Genome: collection of hereditary information

Sequence and structure space are slowly being filled

Structure is more conserved than sequence

Sampling of the interactome remains sparse

There is a need to clarify how proteins interact

Transcriptome: collection of genes expressed under environmental conditions of the cell

Protein-protein interaction

Cellular signaling Expression regulation Metabolic substrate channeling

UniProt	214M	sequences
WORLDWIDE PROTEIN DATA BANK	173K	structures
	24M	Proteins
	>2000M	Interactions
[°] STRING	>5000	Species

JBC ARTICLE

Assembly of B4GALT1/ST6GAL1 heteromers in the Golgi membranes involves lateral interactions via highly charged surface domains

Received for publication, May 27, 2019, and in revised form, August 1, 2019 Published, Papers in Press, August 8, 2019, DOI 10.1074/jbc.RA119.009539

Fawzi Khoder-Agha[‡], O Deborah Harrus[‡], Guillaume Brysbaert[§], Marc F. Lensink[§], Anne Harduin-Lepers[§],
 Tuomo Glumoff[‡], and Sakari Kellokumpu^{‡1}

Two of the conclusions from this paper:

- "B4GALT1 uses its noncatalytic surface for interaction with ST6GAL1"
- "Heteromeric assembly regulates the catalytic activity of B4GALT1 and ST6GAL1"

Signaling landscape

Rex et al,

SARS-CoV-2 signaling pathway map: a functional landscape of molecular mechanisms in COVID-19, J Cell Commun Signal 2021

Publicly available through WikiPathways

UGSF Days

Molecular dynamics

$$F = -\nabla V(\vec{r}) \quad F = m \cdot a$$
$$V = \frac{1}{2} \sum_{i, j \neq i} V_{i, j}$$

Protein dynamics

- Provides a time evolution or trajectory of atomic positions
- Time step of femtoseconds
- Hundreds of nanoseconds required for biological significance

COVID

ORIGINAL RESEARCH published: 12 August 2021 doi: 10.3389/fmolb.2021.713003

DNA Aptamers Block the Receptor Binding Domain at the Spike Protein of SARS-CoV-2

Fabrizio Cleri^{1,2*}, Marc F. Lensink³ and Ralf Blossey³

2. **RIN** – Residue Interaction Networks

Centrality Analysis

- Centrality analysis identifies important nodes in a network
- Many centrality measures exist
- Computing a Z-score highlights the major ones
- Central residues correlate strongly with functional or structural relevance

Residue Interaction Networks

Include water molecules in the analysis

This can also be extended to lipids

... and to sugars

Add dimension:

- Time
- Evolution

3.

Critical Assessment of PRedicted Interactions (CAPRI)

CAPRI organizes blind docking prediction trials

Protein/protein -Peptides -Nucleic acids -Polysaccharides Oligomer assembly Multi-domain assembly Interfacial water positions Binding affinity

Proteins publishes a special CAPRI-dedicated issue with every Evaluation Meeting

Most algorithms developed in CAPRI context

CAPRI has been a proven catalyst CAPRI has made it possible to reliably predict what the quality of your docking model will be!

Management Committee	
Alexandre Bonvin	NL
Marc Lensink	FR
Michael Sternberg	UK
Sandor Vajda	USA
Ilya Vakser	USA
Sameer Velankar	UK
Zhiping Weng	USA
Scientific Advisory Board	
Rommie Amaro	USA
Stephen Burley	USA
Wah Chiu	USA
Kristina Djinovic Carugo	FR

Marc

Alexandre

Shoshana

Guillaume

Nuru

assessment, organization, website, operations, infrastructure

Target diversity

T170

Phage tail

The CAPRI Community (2019)

Note the date: 8th CAPRI Evaluation Meeting: Grenoble February 12 – 16, 2024

Lensink & Méndez, *Curr Pharm Biotechnol* **2008**;9:77 *"Recognition-induced conformational changes in protein-protein docking"*

Lensink *et al*, *Proteins* **2023**, Epub *"Impact of AlphaFold on structure prediction of protein complexes"*

- Searching for targets
- Organizing blind prediction trials
- k-space docking
- guided docking
- co-evolution docking
- contact prediction
- machine learning and deep-learning

Designed protein-protein complex Spanish influenza hemagglutinin

Sarel Fleishman, David Baker University of Washington, USA

Science 2011;332:816

T50

CAPRI SCORESET V2022

	Introduc	tion	I	Browse De	ownload	Help		
Download:	Target ID	Pubmed ID	PDB	Description	-	Stoichiometry	#Interfaces	
 T050.1.pdb T050.1.json T050.1.xml 	1050	Species and kingdom: Interaction type:	JKZA	Influenza A virus / designed antigen/antibody	v Viruses unbound	ABC		Previous
Model download:		(Easy) Interface	1 Receptor Ligand	Number of decoys: 1948 HEMA_I18A0 designed	AB:C 327/171:82 7-328/1-173 1-93	ABC	1500 Ų	Next

The CAPRI scoreset v2022 includes **all published CAPRI targets up to CAPRI Round 50**, including joint CAPRI/CASP Rounds.

All models are uniform!

- all atoms are reordered following PDB standard
- all decoys are superimposed on the target receptor entity
- all chain labeling and residue numbering matches the target
- all computed assessment quantities are included in the dataset

And finally:

Target images are aligned such that they match the flag of Ukraine

Université

0106

de Lille

CITS

The CAPRI scoreset v2022 is developed and maintained by:

- · Marc F. Lensink, CNRS & University of Lille, France
- Theo Mauri, CNRS & University of Lille, France
- · Guillaume Brysbaert, CNRS & University of Lille, France
- Shoshana J. Wodak, VUB-VIB, Belgium

Marc F. Lensink

scoreset.org

Scoreset is...

CAPRI / CASP

CAPRI		CASP			
Since 2001		Since 1994			
Critical Assessment of					
PRedicte	d Interactions	Struc	cture Predictions		
Joint prediction rounds s	ince 2014:				
25 Targets	Round 30	CASP11	2014		
10 Targets	Round 37	CASP12	2016		
21 Targets	Round 46	CASP13	2018		
12 Targets	Round 50	CASP14	2020		
37 Targets	Round 54	CASP15	2022		
Prediction rounds on a "	rolling" basis	Prediction season			
Fits with publication	n schedule	Intense 2 to 3 m	nonths		
3 to 4 weeks per pr	ediction round				
	Differen	ice in targets			
Mostly hetero-dimers or –tr Peptides, sugars, water posi	imers tions	Mostly obligate, many ho Very large assemblies	Mostly obligate, many homo-oligomers Very large assemblies		
Incites method developmen	t	Large-scale testing of me	ethodologies		

CAPRI / CASP

CAPRI		CASP	
Since 2001		Since 1994	
C ritical A ssessment of PR edicte	d Interaction	sti	re P redictions
Joint prediction rounds s	since 20	Prediction over the	
25 Targets	Round	summer of 2022	2014
10 Targets	Round 37	CASFIZ	2016
21 Targets	Round 46	CASP13	2018
12 Targets	Round 50	CASP14	2020
37 Targets	Round 54	CASP15	2022
Prediction rounds on a "	rolling" basis	Prediction season	
Fits with publicatio 3 to 4 weeks per pr	n schedule ediction round Diffe	Results present CASP15 confere Antalya, Decemb	ed at nce in per '22
Mostly hetero-dimers or –t Peptides, sugars, water pos	rimers itions	Mostly obligate, many non Very large assemblies	lo-oligomers
Incites method developmen	nt	Large-scale testing of meth	odologies

"AlphaFold can accurately predict 3D models of protein structures and has the potential to accelerate research in every field of biology."

"AlphaFold: a solution to a 50-year old grand challenge in biology."

www.nature.com > news

'It will change everything': DeepMind's AI makes gigantic leap ... Nov 30, 2020 — DeepMind's AlphaFold 2 algorithm outperformed other teams at the CASP14 protein. Source: DeepMind. DeepMind's 2018 performance at ...

deepmind.com > blog > article > alphafold-a-solution-t... *

AlphaFold: a solution to a 50-year-old grand challenge in ...

Nov 30, 2020 — AlphaFold: The making of a scientific breakthrough \cdot Improvements in the median accuracy of predictions in the free modelling category for the ...

AlphaFold: Using Al for ... · AlphaFold · Computational predictions of ...

'So, either this group is close to solving the folding problem or they cheated somehow.'

Nick Grishin

iviarc F. Lensink

1 Jul 2021

15 Jul 2021

26 Jul 2021

20 Jul 2021

A significant day for the life sciences

Dear all,

Today, EMBL and DeepMind have announced a partnership to make the most complete and accurate database yet of predicted 3D structures for the human proteome freely and openly available to the scientific community. The methods and code for AlphaFold, the Al system that powers the structure predictions in the database, were published last week in Nature and are able to be modified by the scientific community. The AlphaFold Protein Structure Database (https://alphafold.ebi.ac.uk) will make an extensive set of pre-calculated AlphaFold computational structures - including all human proteins – accessible to all scientists, consistent with EMBL's open data mission.

An initial two-year formal collaboration between EMBL and DeepMind has been agreed, in order to provide access to this remarkable resource for the world. Millions of AlphaFold predictions will be made available through this new resource hosted by EMBL-EBI. The initial release contains approximately 365,000 structures, and will eventually increase to an estimated 130 million 3D models. In context, that would be 700-times more than in the current contents of the Protein Data Bank (PDB), the global resource of experimentally derived 3D structure data.

I am happy to answer any specific questions you may have.

Kind regards, Sameer

22 Jul 2021

Marc F. Lensink

A brief history

In **2020**, **AlphaFold 2** outperforms everybody else in the CASP14 blind structure prediction experiment In **2021**, the **AlphaFold Protein Structure Database** is launched by DeepMind and EMBL-EBI; This increases the size of the available protein structure universe **700-fold**

In **2022**, *deep-learning-based methods were* expected to be *applied to assembly prediction* in CASP15 So where is the state-of-the-art now?

AlphaFold 2 significantly outperformed other teams at the CASP14 protein-folding contest – and its previous version's performance at CASP13

T222	T1173	no pdb	X-ray	2.40	A3	
Bacteria						
Bdellovibrio bacteriovorus Cell wall surface anchor				Ver	Very good side-chain	
				pla	cement	
			Target			
14			Yang me	odel 4		
			F(na	t)	0.857	
		Fre He	F(no	n-nat)	0.153	
			S-rm	IS	1.85 Å	

Group	Performance
Jianyi_Yang	5***
YANG-SERVER, YANG-MULTIMER	5/4***/1**
Wei_Zheng, J_Cheng	4/3***/1**
MULTICOM	4/2***/1**
Many others	
AF2-Multimer	2/1**

Scorer	Performance
Takeda-Shitaka	10/ <mark>9***/1</mark> **
MULTICOM	10/6***/3 **
LZERD, Kihara	9/2***/6**
S_Chang	10/1***/7**
S_Huang, HDOCK	4/1***/2**
Venclovas	10/8**
Zou, MDOCKP	6/5**

CAPRI Round 50 / CASP14 Ranking

Only AlphaFold2 monomer existed

CAPRI Round 50 / CASP14 Ranking

"Off-the-shelf" AF2-Multimer: same number of targets, but increased quality

Calculate μ and σ for top-5 models P and TS set, removing exact duplicates Express DockQ in σ (Z-score), retain only positives Sum

DOI: 10.1002/prot.26609

RESEARCH ARTICLE

Impact of AlphaFold on structure prediction of protein complexes: The CASP15-CAPRI experiment 113 authors

Marc F. Lensink¹[©] | Guillaume Brysbaert¹ | Nessim Raouraoua¹ | Paul A. Bates² | Marco Giulini³ | Rodrigo V. Honorato³ | Charlotte van Noort³ | Joao M. C. Teixeira³ | Alexandre M. J. J. Bonvin³ | Ren Kong⁴ | Hang Shi⁴ | Vutanalu⁴ | Chan Chana⁴ | lian liu⁵ | 7hius Cua⁵ | Vias Chan⁵ |

Proteins special issue on CASP15

Lensink & Méndez, *Curr Pharm Biotechnol* **2008**;9:77 *"Recognition-induced conformational changes in protein-protein docking"*

Lensink et al, Proteins **2023**, in press *"Impact of AlphaFold on structure prediction of protein complexes"*

Lensink et al, Proteins **2023**, Epub "Impact of AlphaFold on structure prediction of protein complexes"

How did they get better results than basic AlphaFold runs?

Björn Wallner:

=> agressive sampling: produced up to 30000 predicted structures per target

- Use AlphaFold to generate models (full_dbs)
- Turn on dropout at inference
 - 1. All dropout_rates at default
 - 2. No dropout in the structural module
- Generate many structures with a different random seed
- Use both:
 - multimer_v1
 - multimer_v2
- · Run with and without templates
- Run with an increased number of recycles
- · Select based on the ranking_score

How did they get better results than basic AlphaFold runs?

Björn Wallner:

=> example

H1129

Björn Wallner, CASP15, 2022

Team developments

- MassiveFold bio.tools/massivefold
 - Enhanced AlphaFold
 - Can be run in parallel
 - Highly customizable (dropout, recycle, number of models)
- RINspector apps.cytoscape.org/apps/rinspector
 - Centrality and flexibility analysis of protein structures
 - Exists as app for cytoscape
 - Command-line version in development
- Scoreset scoreset.org
 - Protein-protein interaction benchmark dataset
 - 176k annotated models
 - Includes correct and incorrect models

Computational Biology: Biomolecular Interactions and Dynamics

Norway

Institute for Structural and Functional Glycobiology

- Protein <u>interaction</u> and regulatory networks
- Statistical physics of <u>biomolecular interactions</u>
- Structural biology of protein-carbohydrate interactions
- <u>Computational modeling</u> and dynamics of biomolecular systems

